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ABSTRACT
Mobile sensing data, approximating human behavior and physiol-
ogy, can be processed by machine learning models to predict men-
tal health symptoms. While these models are accurate in smaller
samples, their generalization accuracy decreases in larger samples,
potentially because it is difficult to collect enough mobile sensing
and mental health outcomes data at scale to enable generaliza-
tion. In this study, we hypothesized that augmenting training data
with synthetic data samples could improve the generalizability
of these machine learning models. We created a data augmenta-
tion system that generated synthetic mobile sensing and mental
health outcomes data, and evaluated the utility of this system via
the downstream machine learning task of predicting daily mood
from wearable sensing data. We experimented with both simple
(e.g. noise addition) and novel generative data augmentation meth-
ods, based upon conditional generative adversarial networks and
multi-task learning. Our initial findings suggest that the data aug-
mentation system generated realistic synthetic data, but did not
improve mood prediction. We propose future work to validate our
findings and test other methods to improve the generalizability of
mental health symptom prediction models.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in ubiqui-
tous and mobile computing; • Applied computing→ Life and
medical sciences; • Computing methodologies → Artificial
intelligence.

KEYWORDS
Mobile Sensing; Mental Health; Deep Generative Models; Wear-
ables; mHealth

∗These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp/ISWC ’23 Adjunct , October 8–12, 2023, Cancun, Quintana Roo, Mexico
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0200-6/23/10. . . $15.00
https://doi.org/10.1145/3594739.3612876

ACM Reference Format:
Neha Manjunath, Ze Yuan Li, Eunsol Soul Choi, Srijan Sen, Fei Wang,
and Daniel A. Adler. 2023. Can Data Augmentation Improve Daily Mood
Prediction from Wearable Data? An Empirical Study. In Adjunct Proceedings
of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous
Computing & the 2023 ACM International Symposium onWearable Computing
(UbiComp/ISWC ’23 Adjunct ), October 8–12, 2023, Cancun, Quintana Roo,
Mexico. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3594739.
3612876

1 INTRODUCTION
Mobile technologies can passively collect contextual data on pa-
tient behavior and physiology to inform mental health symptom
monitoring and treatment [22]. These technologies have prompted
researchers to developmachine learningmodels that process mobile
sensing data to predict symptoms of mental illness [1, 15, 24]. This
prior work demonstrates the feasibility of using mobile sensing data
for remote mental health assessment, providing low-burden meth-
ods to passively monitor mental health and identify individuals in
need of care.

Despite this potential, it is difficult to collect mobile sensing data
and mental health outcomes at scale in any single study [4], po-
tentially contributing to the poor generalization accuracy of these
machine learning models – around 60%, at best – in larger cohorts
[21, 23, 33]. Prior work from other areas of machine learning [27, 30]
shows that data augmentation methods can improve model gener-
alizability without further data collection by generating synthetic,
but realistic training samples. Synthetic data can be combined with
training data to simulate a larger dataset.

To this end, we developed a data augmentation system for gen-
erating synthetic mobile sensing and mental health outcomes data.
We then evaluated if this system improved the performance of
machine learning models that predicted mental health symptoms.
Within the augmentation system, we experimented with using com-
mon, simple data augmentation techniques (eg, noise addition), as
well as more sophisticated generative modeling techniques, includ-
ing a novel generative model architecture, designed specifically
to model mobile sensing and mental health outcomes. Our initial
findings suggest that the novel generative model was able to create
realistic synthetic samples, but that the data augmentation system
did not improve mental health prediction. From these experiments,
we discuss opportunities for future work to further evaluate our
findings and improve model generalizability.

https://doi.org/10.1145/3594739.3612876
https://doi.org/10.1145/3594739.3612876
https://doi.org/10.1145/3594739.3612876
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2 RELATEDWORK
Previous studies have explored various data augmentation methods,
and many of these methods have been applied to predict health
outcomes in longitudinal data, similar to mobile sensing data. A
recent survey categorized these techniques into simple methods
that directly transform data through actions like deleting, warping,
or adding random noise, as well as more advanced statistical or
deep learning based approaches that involve training a model to
learn the underlying data distribution and generating synthetic
data based upon this model [32]. These methods often draw inspi-
ration from data augmentation techniques used for more-common
machine learning tasks like image recognition [27]. For instance,
[30] utilized techniques such as jittering (adding random noise) and
scaling (multiplying by random noise) to improve the performance
of a machine learning model that monitored Parkinson’s Disease
symptoms.

Recent work has experimented with more sophisticated methods,
based upon generative models, for augmenting mobile sensing data.
For example, Li et al. proposed a generative adversarial network
(GAN) based model, called ActivityGAN, to generate synthetic
accelerometer data [18]. The authors assessed the utility of the
synthetic data within various human activity recognition tasks.
Similarly, Haradel et al. generated synthetic ECG and EEG data
using a GAN, and showed how the augmented data improved the
performance of machine learning models developed to detect heart
attacks and seizures [13]. While GANs may accurately generate
synthetic accelerometer, ECG, or EEG data, they face challenges in
generating multivariate, multimodal behavioral data due to "mode
collapse’, where synthetic data generated by GANs are only repre-
sent a single distribution mode [2]. This calls for novel methods to
more-accurately capture the multimodal nature of mobile sensing
and mental health outcomes data for realistic data generation.

To the best of our knowledge, only Yu and Sano have experi-
mented with data augmentation methods to improve the perfor-
mance of machine learning models that predict mental health symp-
toms using mobile sensing data [34]. The authors experimented
with using simple, noise addition methods to augment wearable,
smartphone, and ECG data, and then used this data to predict two
self-reported mental health symptoms, observing only minimal
improvements in model performance. Expanding upon this work,
we aimed to evaluate if both simple and more novel generative
model based data augmentation methods could improve mental
health prediction model accuracy. To do this, we proposed a novel
GAN architecture, specifically designed to augment multimodal
behavioral and mental health outcomes data.

3 DATASET
In this work, we evaluated the data augmentation system within
the example task of predicting the daily mood of medical interns. A
medical internship is the first year of a U.S.-based resident physician
training program, and is known to be stressful: residents take care
of extremely sick patients, and are often required to work 24 hour
shifts [5]. This accumulated stress has been linked to higher rates
of depression among residents [12, 20]. Developing low-burden
methods to help residents identify mental health symptoms may
provide motivation to seek care. This motivates developingmachine

learning models to predict residents’ mental health, enabling timely
intervention, treatment, and ideally prophylaxis of mental illness.

3.1 Data Collection Overview
Specifically, we developed models using data collected during the
Intern Health Study. The Intern Health Study is a multi-site prospec-
tive study to examine relationships among behavior, mental health
and well-being during a medical internship [25, 26]. Interns em-
ployed at participating residency programs throughout the United
State were able to enroll in the study online. Participants who pro-
vided informed consent were mailed a Fitbit Charge 2 [9], which
continuously collected minute-by-minute heart rate, sleep, and step
count data. In addition, participants installed a study smartphone
application to self-report daily mood. Data collection took place
over a period of 13 – 14 months, from the two months prior to
the start of the internship through the year-long internship. All
study procedures were approved by the University of Michigan
Institutional Review Board (IRB). Collected data was exclusively
used for research purposes, and participants received a Fitbit device
and up to US $125 as compensation for participation.

3.2 Wearable Sensing Features
We calculated eleven daily wearable sensing features described in
prior work [16, 29] from collected Fitbit data. Specifically, we ap-
proximated the daily step count, as well as the step count during
the most active 10 hours of movement (M10, estimated by identi-
fying the consecutive 10 hours each day with the most steps), and
during the least active 5 hours of movement (L5). We also calcu-
lated the intraday variability, by dividing the squared difference in
step count during subsequent hours by the overall variance in step
count throughout an entire day [29]. High variability, M10, and
low L5 signify daily rest-activity fluctuations that are important
for mental health [29]. From the heart rate data, we calculated the
daily average resting heart rate. We then approximated the heart
rate variability (HRV), a measure of autonomic nervous response
to stress [6], by inverting the heart beats per minute, giving the
average time between beats, and calculating the deviation in these
values. Future work can identify better methods to approximate
HRV when it is not directly measured from devices. Finally, for
sleep, we calculated the time spent asleep, in bed, in deep, light or
REM sleep. Sleep categories (e.g. REM) are automatically estimated
by the Fitbit API.

3.3 Daily Mood Prediction Task
We evaluated the data augmentation system by predicting partici-
pants’ self-reported daily mood from the created wearable sensing
features. Mood is an important indicator of underlying depression
symptoms [17], and self-reported mood has been used as a predic-
tion outcome in prior research using mobile sensing data to predict
mental health [16, 28].

In this study, a daily mood survey was delivered to participants
between 5-10PM. The survey asked participants to rate their av-
erage mood over that day from 1 (low mood) to 10 (high mood).
Similar to prior work [34], we binarized self-reported mood to cre-
ate a classification task. Specifically, mood scores ≥ 8 were labelled
as the negative class and scores < 8 were labelled as the positive
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class. We used 8 as a threshold because it allowed us to create a
balanced classification problem (50% positive, 50% negative sam-
ples). Future work can evaluate the effects of data augmentation in
imbalanced settings, which would make it more difficult to predict
specific outcomes.

4 DATA AUGMENTATION SYSTEM
In this section, we describe the data augmentation system we devel-
oped to improve the performance of mood prediction models. An
overview of this system is presented in Figure 1. The systemworked
by augmenting training data within a personalized cross-validation
procedure from prior work [1, 31]. We used this procedure because
the generalization of similar machine learning models has been
poor without personalizing to individual participants [21, 23, 33]. In
this approach, each participant’s data was temporally split such that
the first x% of collected data was used to train data augmentation
and mood prediction models, and the remaining (100 - x)% was used
as validation data to report performance metrics. We experimented
with x = 20, 40, 60, and 80. Despite the dynamic nature of this ap-
proach, the data points used for training and validation within each
split (x) remained consistent across all augmentation methods. This
ensured that different augmentation techniques could be compared
within each split, but different augmentation techniques should not
be compared across different splits. In addition, for every augmen-
tation method, we generated synthetic data points to match the
training dataset size (ratio of real to synthetic training data is 1:1).

We testedmultiple simple data augmentationmethods from prior
work, as well as more novel data augmentation models based upon
generative adversarial networks (GAN). Augmented (combined
synthetic and actual training) data trained downstream mood pre-
diction models. The mood prediction models were extreme gradient
boosting (XGBoost) models, a more regularized form of gradient
boosting decision trees [8]. This model class has been used in prior
work to predict mental health from mobile sensing data [3, 19, 31].

4.1 Simple Augmentation Methods
Simple data augmentation methods from [14, 34] were applied to
mobile sensing features, holding the mood outcome data constant.
In these methods, 𝑥 ∈ R𝑚 is a standardized feature vector (i.e.
𝜇 = 0, 𝜎 = 1) and 𝑚 is the number of features. An augmented
sample is described as 𝑥 ∈ R𝑚 .

4.1.1 Jittering. Jittering adds random 𝜖 ∼ 𝑁 (0, 𝜎), 𝜖 ∈ R𝑚 to the
mobile sensing features (see equation 1). We experimented with
𝜎 ∈ (0.001, 0.01, 0.1, 1.0).

𝑥 ′ = 𝑥 + 𝜖 (1)

4.1.2 Scaling. Scaling (equation 2) changes the magnitude of all
the data in the dataset by a constant factor 𝛼 . We experimented
with multiple 𝛼 ∈ (0.75, 0.9, 1.1, 1.25).

𝑥 ′ = 𝛼 ∗ 𝑥 (2)

4.1.3 Random Scaling. Random scaling multiplies each sample
(equation 2) by a random 𝛼 ∈ R𝑚 sampled from a Gaussian distri-
bution 𝛼 ∼ 𝑁 (1, 𝜎). We experimented with 𝜎 ∈ (0.01, 0.05, 0.1, 0.5).

Figure 1: An overview of the data augmentation system
and cross-validation procedure used in this work. We used
the personalization cross-validation procedure suggested in
prior work [1, 31], temporally splitting samples across indi-
viduals. For example, in “Iteration 4” the first 80% of collected
data from each participant trained augmentation and mood
prediction models, and models were validated using the re-
maining 20%.

4.2 GAN-based Augmentation Methods
We explored using GANs for data augmentation because of their
demonstrated ability to generate realistic sensor data [13, 18]. We
experimented with both a traditional GAN (Figure 2a), and a novel
conditional GAN (CGAN) architecture developed in this work to
generate multimodal, multivariate wearable sensing and mood out-
comes data (Figure 2b).

4.2.1 GAN. We created a basic generative adversarial network
using methods from [11]. Random noise 𝑧 was sampled from a
Gaussian distribution, 𝑧 ∼ 𝑁 (0, 1). The random noise was input
into a fully connected neural network, 𝐺 , to generate a multivari-
ate synthetic data point 𝑥 ′ = 𝐺 (𝑧), 𝑥 ′ ∈ R𝑚 . This multivariate
synthetic data point modeled both features and raw mood data. A
discriminator fully connected neural network, 𝐷 , was trained to
classify whether a data point was real (𝑥 ) or synthetic (𝑥 ′). During
model training, the generator and discriminator networks “com-
pete”. The discriminator learns to differentiate real and synthetic
data, and subsequently, the generator learns to generate more realis-
tic synthetic data points to fool the discriminator. In our study, both
the generator (12, 32, 64 nodes) and discriminator (64, 32, 1 nodes)
were modeled using three layered feedforward neural networks.

4.2.2 Multi-task CGAN. Prior work shows that GAN models ex-
perience “mode collapse” in multimodal, multivariate behavioral
data [2], only able to accurately model data around a single distri-
bution mode. To counter this, we developed a novel conditional
GAN (CGAN) architecture using multi-task learning [7], modeling
different distribution modes as GAN prediction tasks.
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Figure 2: The (a) generative adversarial network (GAN) and
(b) novel multi-task, conditional GAN model created for the
data augmentation system. 𝑧 is random noise drawn from
a Gaussian distribution 𝑧 ∼ 𝑁 (0, 1). 𝑥 ′ is a multivariate syn-
thetic mobile sensing and mood data point output by the
generator network.

First, we identified the number of tasks (modes) by clustering
training data using K-means, varying the number of clusters, 𝑘 ,
from 1 to 10. The optimal number of tasks (clusters) was chosen
by analyzing the average within-cluster sum of squared distances
between the cluster centers and each data point. We then devel-
oped a GAN model with a single generator for the entire dataset,
but separate discriminators per task. In addition, the GAN had an
additional conditional network and loss. The conditional network
and loss was a multiclass prediction problem, predicting the spe-
cific cluster a generated data point belonged to based upon the
cluster-specific discriminator. The generator was a four-layer feed-
forward neural network (12, 256, 512, and 1024 nodes), and each
task-specific discriminator was a five-layer feedforward neural net-
work (1024, 1024, 512, 256, 1 nodes). The conditional network was
a three layered feedforward neural network (1024, 64, final node =
number of clusters).

5 RESULTS
5.1 Data Overview
71,789 samples (daily wearable sensing and mood outcomes data)
were collected from 1,206 participants. The median number of sam-
ples collected per participant was 43, with an interquartile range
(IQR) of 13 to 94. 50.4% of samples were binarized as low mood
(self-report <8). More information on the dataset and participants
can be found in Table 1.

5.2 Validating the GAN Results
We first validated that the GAN and more novel multi-task CGAN
generated realistic synthetic data samples by visually inspecting
real and generated data, a common practice to assess GAN model

Table 1: Dataset and Participant Overview

Method Value

Data
Number of samples 71,789
Number of participants 1,206
Samples per participant, Median (IQR) 43 (13 to 94)
% Samples Positive Mood Class (self-report < 8) 50.4%
Demographics
Age, Median (IQR) 27 (26 to 28)
Female 56.0%
Male 43.6%
Unknown Sex 0.4%
White 60.8%
Asian 20.6%
Multi-racial 8.3%
Black/African American 4.3%
Latino/Hispanic 3.5%
Other 2.5%

performance [2, 10]. Histograms of four example features can be
found in Figure 3. We found across all features that the GAN model
did not generate realistic data, demonstrating signs of “mode col-
lapse”, only generating samples around the mode of the distribution.
The multi-task CGAN appeared to generate more-realistic synthetic
data, indicating that multi-tasking and adding a conditional loss
may aid in improving wearable and mood data generation.

5.3 Mood Prediction Results
We evaluated downstream mood classification performance by cal-
culating the area under the receiver operating curve (AUROC, see
Table 2). The AUROC for baseline models without any augmenta-
tion ranged from 0.5715 with 20% training data to 0.5934 with 80%.
Simple data augmentation methods, using jittering, scaling, and
random scaling did not drastically baseline model performance. The
GAN resulted in a lower AUROC that increased from 0.5032 with
20% training data to 0.5638 at 80%. The multi-task CGAN showed a
small improvement over the GAN, with AUROC increasing from
0.5233 with 20% training data to 0.5812 at 80%.

Table 2: Area under the receiver operating curve (AUROC)
of the downstream mood classification models, split by the
augmentation method (each row) and cross-validation split
(each column).

Method 20% 40% 60% 80%

No Augmentation 0.5715 0.5822 0.5899 0.5934
Jittering 0.5727 0.5802 0.5861 0.5910
Scaling 0.5747 0.5825 0.5905 0.5952
Random Scaling 0.5739 0.5819 0.5885 0.5950
GAN 0.5032 0.5177 0.5391 0.5638
Multi-task CGAN 0.5233 0.5529 0.5734 0.5812
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Figure 3: Example histograms for select features (x-axis label)
comparing the original to the synthetic data distributions
for the GAN and novel multi-task conditional GAN (CGAN).

6 DISCUSSION
In this work, we experimented with using simple and novel gen-
erative model based data augmentation methods to improve the
performance of a machine learning model that classified mood us-
ing wearable sensing data. We found through visual inspection that
our novel generative model, the multi-task CGAN, successfully gen-
erated realistic synthetic wearable sensing and mood data (Figure
3). Despite successfully recreating data, we found that both simple
(jittering, scaling and random scaling) and generative methods did
not improve mood classification (Table 2). In this discussion, we
contextualize these findings with literature, and discuss opportuni-
ties for future work to further validate these results and improve
model generalizability.

Our results showed that simple and deep learning based aug-
mentation methods did not improve daily mood classification. This
extends findings from prior work showing that simple data augmen-
tation methods do not improve machine learning models predicting
mental health from mobile sensing data [34]. In this work, we
tested a more novel, deep learning architecture designed to gener-
ate synthetic wearable and mood data using conditional GANs and
multi-task learning. Our results suggest that these GANs can gen-
erate realistic wearable sensing and mood data, but do not improve
downstream mood prediction models.

These findings suggest two important insights. First, the quality
of synthetic data generation affects the quality of classification
performance. The multi-task CGAN appeared to generate higher
quality synthetic data than the simpler GAN model, and this higher
quality synthetic data improved mood prediction, relative to the
simpler GAN. But, performance was still reduced compared to the
simpler methods, suggesting that scaling and jittering does not
drastically change the training data distribution, and does not affect
mood prediction.

Second, even with realistic samples, these initial findings sug-
gest that these data augmentation methods do not improve mood
prediction. Other recent work has shown a similar poor general-
ization accuracy of these mental health prediction models in large
samples [21, 33]. We had hoped that our cross-validation approach,
which aimed to personalize models by retraining them across time
with more individual-level data, would improve performance. This
was not the case. Thus, the low generalization accuracy in this
work suggests further complexities in modeling mental health from
sensed-behaviors, across both participants and time [4].

In the future, we need to investigate why the generalization
accuracy of these models is poor. Visualizing multivariate synthetic
and actual data may better compare the data distributions and help
us understand why the augmentation methods did not mood predic-
tion. Further evaluating these results across different datasets, clus-
ters (eg, different K-means starting points) cross-validation splits,
generative and prediction models, and conducting ablation studies
to understand the impact of specific modeling choices (eg, adding
the conditional network) would help uncover if poor performance is
attributed to specific methods in this work, or broader complexities
modeling wearable and mental health outcomes data. For exam-
ple, performance might be poor because it is difficult to model the
varying relationships between behavior and mental health across
individuals over time [4]. Future work could analyze if augmenting
data specifically in less represented subgroups improves general-
ization accuracy. We look forward to discussing these challenges
in the workshop.
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